266 SC Cálculo Diferencial

266 SC Cálculo Diferencial

Detalles

SKU SKU16380
Cantidad en existencia 2849 artículo(s) disponible(s)
Autor (es): Luciano Callejas Tejada, Amalia Ysabel Jiménez Abud
ISBN: 978-607-7653-67-7
No. de edición: 1a. Edición
No. de páginas: 224
Formato: Rústico
 
Precio: 210.00 MXP

Opciones

Cantidad
Agregar a la lista personal


Descripción



Bloque 1 Argumentas el estudio del cálculo mediante el análisis de su evolución, sus modelos matemáticos y su relación con hechos reales

Evaluación diagnóstica; Evolución del cálculo; Modelos matemáticos: un acercamiento a máximos y mínimos; Actividad de cierre; Instrumentos de evaluación.

Bloque 2 Resuelves problemas de límites en situaciones de carácter económico, administrativo, natural y social
Evaluación diagnóstica; Los límites: su interpretación en una tabla, en una gráfica y su aplicación en funciones algebraicas; Noción de límite; Funciones continua y discontinua; Límites laterales; El cálculo de límites en funciones algebraicas y trascendentes; Límites de funciones polinomiales; Límites de funciones racionales; Límites de funciones trigonométricas; Límites de funciones logarítmicas; Límites de funciones exponenciales; Límites infinitos y límites en el infinito; Actividad de cierre; Instrumentos de evaluación.

Bloque 3 Calculas, interpretas y analizas razones de cambio en fenómenos naturales, sociales, económicos y administrativos
Evaluación diagnóstica; La variación de un fenómeno a través del tiempo; Razón de cambio y velocidad instantánea; La velocidad, la rapidez y la aceleración de un móvil en un periodo de tiempo; La derivada como razón de cambio instantánea; La derivada como pendiente; Reglas de derivación; Reglas de derivación del producto y del cociente; Derivación de funciones compuestas: regla de la cadena; Reglas de derivación de funciones trigonométricas; Derivada de funciones trigonométricas inversas; Derivación de funciones exponenciales y logarítmicas; Derivación implícita; Derivadas de orden superior; Actividad de cierre; Instrumentos de evaluación.

Bloque 4 Calculas e interpretas máximos y mínimos aplicados a problemas de optimización
Evaluación diagnóstica; Producciones, máximos y mínimos; Puntos críticos; Funciones crecientes y decrecientes; Variaciones en las producciones, máximos y mínimos relativos; Cálculo de valores máximos y mínimos relativos con el criterio de la primera derivada; Cálculo de valores máximos y mínimos relativos con el criterio de la segunda derivada; Aplicaciones de máximos y mínimos; Trazado de curvas; Actividad de cierre; Instrumentos de evaluación; Apéndice; Soluciones a los afirmando conocimientos; Bibliografía.



Enviar a un amigo

: *
: *
: *